
WHITE PAPER

Copyright © 2009, Juniper Networks, Inc.	

Network Operating System Evolution

Juniper Networks JUNOS Software: Architectural Choices at the Forefront of
Networking

ii	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

Table of Contents
Executive Summary . . 1

Introduction . . 1

Origin and Evolution of Network Operating Systems. . 1

First-Generation OS: Monolithic Architecture . 2

Second-Generation OS: Control Plane Modularity . 2

Third-Generation OS: Flexibility, Scalability and Continuous Operation . 3

Basic OS Design Considerations . . 3

Commercial Versus Open-Source Donor OS . 3

Functional Separation and Process Scheduling . 4

Memory Model . 4

Scheduling Discipline . 4

Virtual Memory/Preemptive Scheduling Programming Model . 4

Generic Kernel Design. . 6

Monolithic Versus Microkernel Network Operating System Designs . 6

JUNOS Software Kernel. . 7

Process Scheduling in JUNOS Software . 8

JUNOS Software Routing Protocol Process. . 9

Scalability . . 10

Scaling Down . 10

Scaling Up . 11

Architecture and Infrastructure . . 12

Parallelism . 12

Flexibility and Portability . 13

Degrees of Modularity . 14

Open Architecture. . 14

Product Maintenance . . 14

Self-Healing . 14

Troubleshooting . 15

Quality and Reliability. . 16

System Integrity . 16

Release Process Summary . 18

Final Product Quality and Stability . . 19

Conclusion. . 19

What Makes JUNOS Software Different. . 20

About Juniper Networks. . 21

Copyright © 2009, Juniper Networks, Inc.	 iii

WHITE PAPER - Network Operating System Evolution

Table of Figures
Figure 1: Typical preemptive scheduling sequence. . 4

Figure 2: Resource management conflicts in preemptive scheduling. . 5

Figure 3: Generic JUNOS Software 9.0 architectural structure. . 7

Figure 4: Multilevel CPU scheduling in JUNOS Software . . 8

Figure 5: Hierarchical protocol stack operation. . 9

Figure 6: Typical CPU times capture (from NEC 8800 product documentation). . 12

Figure 7: Product consolidation under a common operating system . . 13

Copyright © 2009, Juniper Networks, Inc.	 1

WHITE PAPER - Network Operating System Evolution

Executive Summary
This paper discusses the requirements and challenges inherent in the design of a carrier-class network operating
system (OS). Key facets of Juniper Networks® JUNOS® Software, Juniper’s network operating system, are used
to illustrate the evolution of OS design and underscore the relationship between functionality and architectural
decisions.

The challenge of designing a contemporary network operating system is examined from different angles, including
flexibility, ability to power a wide range of platforms, nonstop operation, and parallelism. Architectural challenges,
trade-offs and opportunities are identified, as well as some of the best practices in building state-of-the-art network
operating systems.

Introduction
Modern network devices are complex entities composed of both silicon and software. Thus, designing an efficient
hardware platform is not, by itself, sufficient to achieve an effective, cost-efficient and operationally tenable product.
The control plane plays a critical role in the development of features and in ensuring device usability.

Although progress from the development of faster CPU boards and forwarding planes is visible, structural changes
made in software are usually hidden, and while vendor collateral often offers a list of features in a carrier-class
package, operational experiences may vary considerably.

Products that have been through several generations of software releases provide the best examples of the
difference made by the choice of OS. It is still not uncommon to find routers or switches that started life under
older, monolithic software and later migrated to more contemporary designs. The positive effect on stability and
operational efficiency is easy to notice and appreciate.

However, migration from one network operating system to another can pose challenges from nonoverlapping feature
sets, noncontiguous operational experiences and inconsistent software quality. These potential challenges make it is
very desirable to build a control plane that can power the hardware products and features supported in both current
and future markets.

Developing a flexible, long-lasting and high-quality network OS provides a foundation that can gracefully evolve to
support new needs in its height for up and down scaling, width for adoption across many platforms, and depth for
rich integration of new features and functions. It takes time, significant investment and in-depth expertise.

Most of the engineers writing the early releases of JUNOS Software came from other companies where they had
previously built network software. They had firsthand knowledge of what worked well, and what could be improved.
These engineers found new ways to solve the limitations that they’d experienced in building the older operating
systems. Resulting innovations in JUNOS are significant and rooted in its earliest design stages. Still, to ensure that
our products anticipate and fulfill the next generation of market requirements, JUNOS is periodically reevaluated to
determine whether any changes are needed to ensure that it continues to provide the reliability, performance and
resilience for which it is known.

Origin and Evolution of Network Operating Systems
Contemporary network operating systems are mostly advanced and specialized branches of POSIX-compliant
software platforms and are rarely developed from scratch. The main reason for this situation is the high cost of
developing a world-class operating system all the way from concept to finished product. By adopting a general-
purpose OS architecture, network vendors can focus on routing-specific code, decrease time to market, and benefit
from years of technology and research that went into the design of the original (donor) products.

For example, consider Table 1, which lists some operating systems for routers and their respective origins (the
Generation column is explained in the following sections).

2	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

Table 1: Router Operating System Origins

VENDOR ROUTER OS DONOR OS DONOR OS
OWNER

GENERATION DONOR OS WEB
SITE

Juniper
Networks

JUNOS Software FreeBSD Internet community 2, 3 www.freebsd.org

Cisco IOS-XR QNX QNX Software
Systems

2 www.qnx.com

Cisco IOS n/a Proprietary 1 n/a

Cisco IOS-XE IOS, Linux Hybrid (ASR) 1.5 n/a

Cisco Modular IOS IOS, QNX Hybrid (6500) 1.5 n/a

Alcatel-Lucent SR OS VxWorks WindRiver 2 www.windriver.com

Redback SEOS NetBSD Internet community 2 www.netbsd.org

Force10 FTOS NetBSD Internet community 2 www.netbsd.org

Extreme ExtremeWARE Linux Internet community 2 www.xoslinux.org

Generally speaking, network operating systems in routers can be traced to three generations of development, each
with distinctively different architectural and design goals.

First-Generation OS: Monolithic Architecture
Typically, first-generation network operating systems for routers and switches were proprietary images running in
a flat memory space, often directly from flash memory or ROM. While supporting multiple processes for protocols,
packet handling and management, they operated using a cooperative, multitasking model in which each process
would run to completion or until it voluntarily relinquished the CPU.

All first-generation network operating systems shared one trait: They eliminated the risks of running full-size
commercial operating systems on embedded hardware. Memory management, protection and context switching
were either rudimentary or nonexistent, with the primary goals being a small footprint and speed of operation.
Nevertheless, first-generation network operating systems made networking commercially viable and were deployed
on a wide range of products. The downside was that these systems were plagued with a host of problems associated
with resource management and fault isolation; a single runaway process could easily consume the processor or
cause the entire system to fail. Such failures were not uncommon in the data networks controlled by older software
and could be triggered by software errors, rogue traffic and operator errors.

Legacy platforms of the first generation are still seen in networks worldwide, although they are gradually being
pushed into the lowest end of the telecom product lines.

Second-Generation OS: Control Plane Modularity
The mid-1990s were marked by a significant increase in the use of data networks worldwide, which quickly
challenged the capacity of existing networks and routers. By this time, it had become evident that embedded
platforms could run full-size commercial operating systems, at least on high-end hardware, but with one catch: They
could not sustain packet forwarding with satisfactory data rates. A breakthrough solution was needed. It came in the
concept of a hard separation between the control and forwarding plane—an approach that became widely accepted
after the success of the industry’s first application-specific integrated circuit (ASIC)-driven routing platform, the
Juniper Networks M40. Forwarding packets entirely in silicon was proven to be viable, clearing the path for next-
generation network operating systems, led by Juniper with its JUNOS Software.

Today, the original M40 routers are mostly retired, but their legacy lives in many similar designs, and their blueprints
are widely recognized in the industry as the second-generation reference architecture.

Second-generation network operating systems are free from packet switching and thus are focused on control
plane functions. Unlike its first-generation counterparts, a second-generation OS can fully use the potential of
multitasking, multithreading, memory management and context manipulation, all making systemwide failures
less common. Most core and edge routers installed in the past few years are running second-generation operating
systems, and it is these systems that are currently responsible for moving the bulk of traffic on the Internet and in
corporate networks.

Copyright © 2009, Juniper Networks, Inc.	 3

WHITE PAPER - Network Operating System Evolution

However, the lack of a software data plane in second-generation operating systems prevents them from powering
low-end devices without a separate (hardware) forwarding plane. Also, some customers cannot migrate from their
older software easily because of compatibility issues and legacy features still in use.

These restrictions led to the rise of transitional (generation 1.5) OS designs, in which a first-generation monolithic
image would run as a process on top of the second-generation scheduler and kernel, thus bridging legacy features
with newer software concepts. The idea behind “generation 1.5” was to introduce some headroom and gradually
move the functionality into the new code, while retaining feature parity with the original code base. Although
interesting engineering exercises, such designs were not as feature-rich as their predecessors, nor as effective as
their successors, making them of questionable value in the long term.

Third-Generation OS: Flexibility, Scalability and Continuous Operation
Although second-generation designs were very successful, the past 10 years have brought new challenges.
Increased competition led to the need to lower operating expenses and a coherent case for network software flexible
enough to be redeployed in network devices across the larger part of the end-to-end packet path. From multiple-
terabit routers to Layer 2 switches and security appliances, the “best-in-class” catchphrase can no longer justify a
splintered operational experience—true ”network“ operating systems are clearly needed. Such systems must also
achieve continuous operation, so that software failures in the routing code, as well as system upgrades, do not affect
the state of the network. Meeting this challenge requires availability and convergence characteristics that go far
beyond the hardware redundancy available in second-generation routers.

Another key goal of third-generation operating systems is the capability to run with zero downtime (planned and
unplanned). Drawing on the lesson learned from previous designs regarding the difficulty of moving from one OS
to another, third-generation operating systems also should make the migration path completely transparent to
customers. They must offer an evolutionary, rather than revolutionary, upgrade experience typical to the retirement
process of legacy software designs.

Basic OS Design Considerations
Choosing the right foundation (prototype) for an operating system is very important, as it has significant implications
for the overall software design process and final product quality and serviceability. This importance is why OEM
vendors sometimes migrate from one prototype platform to another midway through the development process,
seeking a better fit. Generally, the most common transitions are from a proprietary to a commercial code base and
from a commercial code base to an open-source software foundation.

Regardless of the initial choice, as networking vendors develop their own code, they get further and further away
from the original port, not only in protocol-specific applications but also in the system area. Extensions such as
control plane redundancy, in-service software upgrades and multichassis operation require significant changes
on all levels of the original design. However, it is highly desirable to continue borrowing content from the donor
OS in areas that are not normally the primary focus of networking vendors, such as improvements in memory
management, scheduling, multicore and symmetric multiprocessing (SMP) support, and host hardware drivers. With
proper engineering discipline in place, the more active and peer-reviewed the donor OS is, the more quickly related
network products can benefit from new code and technology.

This relationship generally explains another market trend evident in Table 1—only two out of five network operating
systems that emerged in the routing markets over the past 10 years used a commercial OS as a foundation.

Juniper’s main operating system, JUNOS Software, is an excellent illustration of this industry trend. The basis of
the JUNOS kernel comes from the FreeBSD UNIX OS, an open-source software system. The JUNOS kernel and
infrastructure have since been heavily modified to accommodate advanced and unique features such as state
replication, nonstop active routing and in-service software upgrades, all of which do not exist in the donor operating
system. Nevertheless, the JUNOS Software tree can still be synchronized with the FreeBSD repository to pick the
latest in system code, device drivers and development tool chains, which allows Juniper Networks engineers to
concentrate on network-specific development.

Commercial Versus Open-Source Donor OS
The advantage of a more active and popular donor OS is not limited to just minor improvements—the cutting edge
of technology creates new dimensions of product flexibility and usability. Not being locked into a single-vendor
framework and roadmap enables greater control of product evolution as well as the potential to gain from progress
made by independent developers.

4	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

This benefit is evident in JUNOS Software, which became a first commercial product to offer hard resource
separation of the control plane and a real-time software data plane. Juniper-specific extension of the original BSD
system architecture relies on multicore CPUs and makes JUNOS the only operating system that powers both
low-end software-only systems and high-end multiple-terabit hardware platforms with images built from the same
code tree. This technology and experience could not be created without support from the entire Internet-driven
community. The powerful collaboration between leading individuals, universities and commercial organizations helps
JUNOS stay on the very edge of operating system development. Further, this collaboration works both ways: Juniper
donates to the free software movement, one example being the Juniper Networks FreeBSD/MIPS port.

Functional Separation and Process Scheduling
Multiprocessing, functional separation and scheduling are fundamental for almost any software design, including
network software. Because CPU and memory are shared resources, all running threads and processes have to
access them in a serial and controlled fashion. Many design choices are available to achieve this goal, but the two
most important are the memory model and the scheduling discipline. The next section briefly explains the intricate
relation between memory, CPU cycles, system performance and stability.

Memory Model
The memory model defines whether processes (threads) run in a common memory space. If they do, the overhead
for switching the threads is minimal, and the code in different threads can share data via direct memory pointers.
The downside is that a runaway process can cause damage in memory that does not belong to it.

In a more complex memory model, threads can run in their own virtual machines, and the operating system switches
the context every time the next thread needs to run. Because of this context switching, direct communication
between threads is no longer possible and requires special interprocess communication (IPC) structures such as
pipes, files and shared memory pools.

Scheduling Discipline
Scheduling choices are primarily between cooperative and preemptive models, which define whether thread
switching happens voluntarily (Figure 1). A cooperative multitasking model allows the thread to run to completion,
and a preemptive design ensures that every thread gets access to the CPU regardless of the state of other threads.

Figure 1: Typical preemptive scheduling sequence

Virtual Memory/Preemptive Scheduling Programming Model
Virtual memory with preemptive scheduling is a great design choice for properly constructed functional blocks,
where interaction between different modules is limited and well defined. This technique is one of the main benefits
of the second-generation OS designs and underpins the stability and robustness of contemporary network operating
systems. However, it has its own drawbacks.

Notwithstanding the overhead associated with context switching, consider the interaction between two threads
(Figure 2), A and B, both relying on the common resource R. Because threads do not detect their relative scheduling
in the preemptive model, they can actually access R in a different order and with varying intensity. For example, R can
be accessed by A, then B, then A, then A and then B again. If thread B modifies resource R, thread A may get different
results at different times—and without any predictability. For instance, if R is an interior gateway protocol (IGP) next

THREAD BTHREAD A

Interrupt suspends thread A

Thread A is selected for run

Thread B preempts thread A

Thread A resumes

System idle, threads A and B ready to run

Copyright © 2009, Juniper Networks, Inc.	 5

WHITE PAPER - Network Operating System Evolution

hop, B is an IGP process, and A is a BGP process, then BGP route installation may fail because the underlying next
hop was modified midway through routing table modification. This scenario would never happen in the cooperative
multitasking model, because the IGP process would release the CPU only after it finishes the next-hop maintenance.

Figure 2: Resource management conflicts in preemptive scheduling

This problem is well researched and understood within software design theory, and special solutions such as
resource locks and synchronization primitives are easily available in nearly every operating system. However, the
effectiveness of IPC depends greatly on the number of interactions between different processes. As the number of
interacting processes increases, so does the number of IPC operations. In a carefully designed system, the number
of IPC operations is proportional to the number of processes (N). In a system with extensive IPC activity, this number
can be proportional to N2.

Exponential growth of an IPC map is a negative trend not only because of the associated overhead, but because of
the increasing number of unexpected process interactions that may escape the attention of software engineers.

In practice, overgrown IPC maps result in systemwide “IPC meltdowns” when major events trigger intensive
interactions. For instance, pulling a line card would normally affect interface management, IGP, exterior gateway
protocol and traffic engineering processes, among others. When interprocess interactions are not well contained,
this event may result in locks and tight loops, with multiple threads waiting on each other and vital system
operations such as routing table maintenance and IGP computations temporarily suspended. Such defects are
signatures of improper modularization, where similar or heavily interacting functional parts do not run as one
process or one thread.

The right question to ask is, “Can a system be too modular?” The conventional wisdom says, “Yes.”

Excessive modularity can bring long-term problems, with code complexity, mutual locks and unnecessary process
interdependencies. Although none of these may be severe enough to halt development, feature velocity and
scaling parameters can be affected. Complex process interactions make programming for such a network OS an
increasingly difficult task.

On the other hand, the cooperative multitasking, shared memory paradigm becomes clearly suboptimal if unrelated
processes are influencing each other via the shared memory pool and collective restartability. A classic problem of
first-generation operating systems was systemwide failure due to a minor bug in a nonvital process such as SNMP
or network statistics. Should such an error occur in a protected and independently restartable section of system
code, the defect could easily be contained within its respective code section.

This brings us to an important conclusion.

No fixed principle in software design fits all possible situations.

Ideally, code design should follow the most efficient paradigm and apply different strategies in different parts of the
network OS to achieve the best marriage of architecture and function. This approach is evident in JUNOS Software,
where functional separation is maintained so that cooperative multitasking and preemptive scheduling can both be
used effectively, depending on the degree of IPC containment between functional modules.

THREAD ATHREAD B

Resource R read by thread B

Resource R read by thread A Thread’s A view on Resource R is inconsistent

Thread B modifies resource R

Thread A works on the resource R assuming it is current

6	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

Generic Kernel Design
Kernels normally do not provide any immediately perceived or revenue-generating functionality. Instead, they
perform housekeeping activities such as memory allocation and hardware management and other system-level
tasks. Kernel threads are likely the most often run tasks in the entire system. Consequently, they have to be robust
and run with minimal impact on other processes.

In the past, kernel architecture largely defined the operating structure of the entire system with respect to memory
management and process scheduling. Hence, kernels were considered important differentiators among competing
designs.

Historically, the disputes between the proponents and opponents of lightweight versus complex kernel architectures
came to a practical end when most operating systems became functionally decoupled from their respective kernels.
Once software distributions became available with alternate kernel configurations, researchers and commercial
developers were free to experiment with different designs.

For example, the original Carnegie-Mellon Mach microkernel was originally intended to be a drop-in replacement
for the kernel in BSD UNIX and was later used in various operating systems, including mkLinux and GNU FSF
projects. Similarly, some software projects that started life as purely microkernel-based systems later adopted
portions of monolithic designs.

Over time, the radical approach of having a small kernel and moving system functions into the user-space processes
did not prevail. A key reason for this was the overhead associated with extra context switches between frequently
executed system tasks running in separate memory spaces. Furthermore, the benefits associated with restartability
of essentially all system processes proved to be of limited value, especially in embedded systems. With the system
code being very well tested and limited to scheduling, memory management and a handful of device drivers, the
potential errors in kernel subsystems are more likely to be related to hardware failures than to software bugs. This
means, for example, that simply restarting a faulty disk driver is unlikely to help the routing engine stay up and
running, as the problem with storage is likely related to a hardware failure (for example, uncorrectable fault in a
mass storage device or system memory bank).

Another interesting point is that although both monolithic and lightweight kernels were widely studied by almost all
operating system vendors, few have settled on purist implementations.

For example, Apple’s Mac OS X was originally based on microkernel architecture, but now runs system processes,
drivers and the operating environment in BSD-like subsystems. Microsoft NT and derivative operating systems also
went through multiple changes, moving critical performance components such as graphical and I/O subsystems
in and out of the system kernel to find the right balance of stability, performance and predictability. These changes
make NT a hybrid operating system. On the other hand, freeware development communities such as FSF, FreeBSD
and NetBSD have mostly adopted monolithic designs (for example, Linux kernel) and have gradually introduced
modularity into selected kernel sections (for example, device drivers).

So what difference does kernel architecture make to routing and control?

Monolithic Versus Microkernel Network Operating System Designs
In the network world, both monolithic and microkernel designs can be used with success.

However, the ever-growing requirements for a system kernel quickly turn any classic implementation into a
compromise. Most notably, the capability to support a real-time forwarding plane along with stateful and stateless
forwarding models and extensive state replication requires a mix of features not available from any existing
monolithic or microkernel OS implementation.

This lack can be overcome in two ways.

First, a network OS can be constrained to a limited class of products by design. For instance, if the OS is not intended
for mid- to low-level routing platforms, some requirements can be lifted. The same can be done for flow-based
forwarding devices, such as security appliances. This artificial restriction allows the network operating systems to
stay closer to their general-purpose siblings—at the cost of fracturing the product lineup. Different network element
classes will now have to maintain their own operating systems, along with unique code bases and protocol stacks,
which may negatively affect code maturity and customer experience.

Second, the network OS can evolve into a specialized design that combines the architecture and advantages of
multiple classic implementations.

Copyright © 2009, Juniper Networks, Inc.	 7

WHITE PAPER - Network Operating System Evolution

This custom kernel architecture is a more ambitious development goal because the network OS gets further away
from the donor OS, but the end result can offer the benefits of feature consistency, code maturity, and operating
experience. This is the design path that Juniper selected for JUNOS.

JUNOS Software Kernel
According to the formal criteria, the JUNOS kernel is fully customizable (Figure 3). At the very top is a portion of code
that can be considered a microkernel. It is responsible for real-time packet operations and memory management,
as well as interrupts and CPU resources. One level below it is a more conventional kernel that contains a scheduler,
memory manager and device drivers in a package that looks more like a monolithic design. Finally, there are user-
level (POSIX) processes that actually serve the kernel and implement functions normally residing inside the kernels
of classic monolithic router operating systems. Some of these processes can be compound or run on external CPUs
(or packet forwarding engines). In JUNOS Software, examples include periodic hello management, kernel state
replication, and protected system domains (PSDs).

The entire structure is strictly hierarchical, with no underlying layers dependent on the operations of the top layers.
This high degree of virtualization allows the JUNOS kernel to be both fast and flexible.

However, even the most advanced kernel structure is not a revenue-generating asset of the network element.
Uptime is the only measurable metric of system stability and quality. This is why the fundamental difference between
the JUNOS kernel and competing designs lies in the focus on reliability.

Figure 3: Generic JUNOS Software 9.0 architectural structure

Coupled with Juniper’s industry-leading nonstop active routing and system upgrade implementation, kernel state
replication acts as the cornerstone for continuous operation. In fact, the JUNOS redundancy scheme is designed to
protect data plane stability and routing protocol adjacencies at the same time. With in-service software upgrade,
networks powered by JUNOS are becoming immune to the downtime related to the introduction of new features or
bug fixes, enabling them to approach true continuous operation. Continuous operation demands

RT Core

BSD Kernel
Real-time domain

PFE µkernel
O

th
er

 r
ea

l-
tim

e
th

re
ad

s

R
ea

l-
tim

e
st

at
is

tic
s

Fo
rw

ar
di

ng
 th

re
ad

s

Sy
sl

og

PF
Em

an

O
th

er
 P

O
SI

X
pr

oc
es

se
s

Sa
m

pl
e

co
lle

ct
or

B
SD

 k
er

ne
l t

hr
ea

ds

Fi
re

w
al

l c
om

pi
le

r

Al
ar

m
 m

an
ag

er

Q
oS

 m
an

ag
er

Ch
as

si
s

m
an

ag
em

en
t

In
te

rf
ac

e
m

an
ag

em
en

t

Co
m

m
on

 r
ou

tin
g

Non real-time domain

Real-time domain

8	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

that the integrity of the control and forwarding planes remains intact in the event of failover or system upgrades,
including minor and major release changes. Devices running JUNOS Software will not miss or delay any routing
updates when either a failure or a planned upgrade event occurs.

This goal of continuous operation under all circumstances and during maintenance tasks is ambitious, and it reflects
Juniper’s innovation and network expertise, which is unique among network vendors.

Process Scheduling in JUNOS Software
Innovation in JUNOS Software does not stop at the kernel level; rather, it extends to all aspects of system operation.

As mentioned before, there are two tiers of schedulers in JUNOS, the topmost becoming active in systems with a
software data plane to ensure the real-time handling of incoming packets. It operates in real time and ensures that
quality of service (QoS) requirements are met in the forwarding path.

The second-tier (non-real-time) scheduler resides in the base JUNOS kernel and is similar to its FreeBSD
counterpart. It is responsible for scheduling system and user processes in a system to enable preemptive
multitasking.

In addition, a third-tier scheduler exists within some multithreaded user-level processes, where threads operate
in a cooperative, multitasking model. When a compound process gets the CPU share, it may treat it like a virtual
CPU, with threads taking and leaving the processor according to their execution flow and the sequence of atomic
operations. This approach allows closely coupled threads to run in a cooperatively multitasking environment and
avoid being entangled in extensive IPC and resource- locking activities (Figure 4).

Figure 4: Multilevel CPU scheduling in JUNOS Software

Another interesting aspect of multi-tiered scheduling is resource separation. Unlike first-generation designs,
JUNOS systems with a software forwarding plane cannot freeze when overloaded with data packets, as the first-level
scheduler will continue granting CPU cycles to the control plane.

Real-time microkernel
Scheduling Level I

Scheduling Level II

Real-time Non-real-time

Forwarding code Kernel

POSIX
process
(simple)

Kernel
thread

POSIX
process

(compound)

Thread Thread Thread

Scheduling Level III

Copyright © 2009, Juniper Networks, Inc.	 9

WHITE PAPER - Network Operating System Evolution

JUNOS Software Routing Protocol Process
The routing protocol process daemon (RPD) is the most complex process in a JUNOS system. It not only contains
much of the actual code for routing protocols, but also has its own scheduler and memory manager. The scheduler
within RPD implements a cooperative multitasking model, in which each thread is responsible for releasing the CPU
after an atomic operation has been completed. This design allows several closely related threads to coexist without
the overhead of IPC and to scale without risk of unwanted interactions and mutual locks.

The threads within RPD are highly modular and may also run externally as standalone POSIX processes—this is,
for example, how many periodic protocol operations are performed. In the early days of RPD, each protocol was
responsible for its own adjacency management and control. Now, most keepalive processing resides outside RPD,
in the Bidirectional Forwarding Detection protocol (BFD) daemon and periodic packet management process daemon
(PPMD), which are, in turn, distributed between the routing engine and the line cards. The unique capability of RPD
to combine preemptive and cooperative multitasking powers the most scalable routing stack in the market.

Compound processes similar to RPD are known to be very effective but sometimes are criticized for the lack of
protection between components. It has been said that a failing thread will cause the entire protocol stack to restart.
Although this is a valid point, it is easy to compare the impact of this error against the performance of the alternative
structure, where every routing protocol runs in a dedicated memory space.

Assume that the router serves business VPN customers, and the ultimate revenue-generating product is continuous
reachability between remote sites. At the very top is a BGP process responsible for creating forwarding table entries.
Those entries are ultimately programmed into a packet path ASIC for the actual header lookup and forwarding. If
the BGP process hits a bug and restarts, forwarding table entries may become stale and would have to be flushed,
thus disrupting customer traffic. But BGP relies on lower protocols in the stack for traffic engineering and topology
information, and it will not be able to create the forwarding table without OSPF or RSVP. If any of these processes are
restarted, BGP will also be affected (Figure 5). This case supports the benefits of running BGP, OSPF and RSVP in
shared memory space, where the protocols can access common data without IPC overhead.

Figure 5: Hierarchical protocol stack operation

Interface
status

Time

In
fo

rm
at

io
n

flo
w

Interface
Manager

Topology

OSPF

VPN
nexthop

RSVP-TE

VPN FIB

BGP

10	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

In a reverse example, several routing protocols legitimately operate at the same level and do not depend on each
other. One case would be unicast family BGP and Protocol Independent Multicast (PIM). Although both depend on
reachability information about connected and IGP known networks, failures in one protocol can be safely ignored in
the other. For instance, unicast forwarding to remote BGP known networks can continue even if multicast forwarding
is disrupted by PIM failure. In this case, the multicast and unicast portions of the routing code are better off stored in
different protected domains so they do not affect each other.

Looking deeper into the realm of exceptions, we find that they occur due to software and hardware failures alike.
A faulty memory bank may yield the same effect as software that references a corrupt pointer—in both cases, the
process will most likely be restarted by a system.

In general, the challenge in ensuring continuous operation is fourfold:

First, the existing forwarding entries should not be affected. Restart of a process should not affect the traffic •	
flowing through the router.

Second, the existing forwarding entries should not become stale. Routers should not misdirect traffic in the •	
event of a topology change (or lack thereof).

Third, protocol operation should have low overhead and be well contained. Excessive CPU utilization and •	
deadlocks are not allowed as they negatively affect node stability.

Fourth, the routing protocol peers should not be affected. The network should remain stable.•	

Once again, we see that few software challenges can be met by structuring in one specific way.

Routing threads may operate using a cooperative, preemptive or hybrid task model, but failure recovery still calls
for state restoration using external checkpoint facilities. If vital routing information were duplicated elsewhere and
could be recovered promptly, the failure would be transparent to user traffic and protocol peers alike. Transparency
through prompt recovery is the principal concept underlying any NSR design and the main idea behind the
contemporary Juniper Networks RPD implementation.

Instead of focusing on one technology or structure, Juniper Networks engineers evolve the JUNOS Software
protocol stack according to a “survival of the fittest” principle, toward the goal of true nonstop operation, reliability
and usability. State replication, checkpointing and IPC are all used to reduce the impact of software and hardware
failures. The JUNOS control plane is designed to maintain speed, uptime and full state under the most unfavorable
network situations.

Adapting to ever-changing real-world conditions and practical applications, the JUNOS routing architecture will
continue to evolve to become even more advanced, with threads added or removed as dictated by the needs of best-
in-class software design. Juniper Networks software is constantly adapted to the operating environment, and as you
read this paragraph, new ideas and concepts are being integrated into JUNOS Software. Stay tuned.

Scalability
JUNOS can scale up and down to platforms of different sizes. This capability is paramount to the concept of
“network OS” that can power a diverse range of network elements. The next section highlights the challenges and
opportunities seen in this aspect of networking.

Scaling Down
Scaling down is the capacity of a network operating system to run on low-end hardware, thus creating a consistent
user experience and ensuring the same level of equipment resilience and reliability across the entire network, from
high-end to low-end routing platforms.

Achieving this goal involves multiple challenges for a system designer. Not only does the code have to be efficient
on different hardware architectures, but low-end systems bring their own unique requirements, such as resource
constraints, cost, and unique security and operations models. In addition, many low-end routers, firewalls and
switches require at least some CPU assistance for packet forwarding or services, thus creating the need for a
software forwarding path.

Taking an arbitrary second-generation router OS and executing it in a low-end system can be a challenging task,
evidenced by the fact that no vendor except Juniper actually ships low-end and high-end systems running the same
OS based on second-generation design principles or better.

Copyright © 2009, Juniper Networks, Inc.	 11

WHITE PAPER - Network Operating System Evolution

But bringing a carrier-sized OS all the way down to the enterprise is also rewarding.

It brings immediate advantages to customers in the form of uniform management, compatibility and OPEX savings
across the entire network. It also improves the original OS design. During the “fasting” exercise needed to fit the OS
into low-end devices, the code is extensively reviewed, and code structure is optimized. Noncritical portions of code
are removed or redesigned.

What’s more, the unique requirements of variable markets (for example, security, Ethernet and enterprise) help
stress-test the software in a wide range of situations, thus hardening the overall design. Scaling limits are pushed
across many boundaries when the software adopts new roles and applications.

Finally, low-end systems typically ship in much larger quantities than high-end systems. The increased number
of systems in the field proportionally amplifies the chances of finding nonobvious bugs and decreases the average
impact of a given bug on the installed base worldwide.1 All these factors together translate into a better product, for
both carriers and enterprises.

It can be rightfully said that the requirement for scaling down has been a major source of inspiration for
JUNOS developers since introduction of the Juniper Networks J Series Services Routers. The quest for efficient
infrastructure has helped with such innovative projects as JUNOS Software SDK, and ultimately paved the way to
the concept of one OS powering the entire network—the task that has never been achieved in history of networking
before.

Scaling Up
Empowerment of a multichassis, multiple-terabit router is associated with words such as upscale and high end, all
of which apply to JUNOS. However, it is mostly the control plane capacity that challenges the limits of software in
modern routers with all-silicon forwarding planes. For example, a 1.6-terabit router with 80 x 10 Gigabit Ethernet
core-facing interfaces may place less stress on its control plane than a 320-megabit router with 8,000 slow-speed
links and a large number of IGP and BGP adjacencies behind them.

Scaling is dependent on many factors. One of the most important is proper level of modularity. As discussed in the
previous sections, poor containment of intermodule interactions can cause exponential growth in supplementary
operations and bring a system to gridlock.

Another factor is design goal and associated architectural decisions and degree of complexity. For instance, if a
router was never intended to support 5,000 MPLS LSP circuits, this number may still be configurable, but will not
operate reliably and predictably. The infrastructure changes required to fix this issue can be quite significant.

Realistic, multidimensional scaling is an equivalent of the Dhrystone2 benchmark. This scaling is how a routing
system proves itself to be commercially attractive to customers. Whenever discussing scaling, it is always good to
ask vendors to stand behind their announced scaling limits. For example, the capability to configure 100,000 logical
interfaces on a router does not necessarily mean that such a configuration is viable, as issues may arise on different
fronts—slow responses to user commands, software timeouts and protocol adjacency loss. Vendor commitment
means that the advertised limits are routinely checked and tested and new feature development occurs according to
relevant expectations.

Scaling is where JUNOS Software delivers.

Some of the biggest networks in the world are built around JUNOS scaling capacities, supporting thousands of
BGP and IGP peers on the same device. Likewise, core routers powered by JUNOS can support tens of thousands of
transit MPLS label-switched paths (LSPs). With its industry-leading slot density on the Juniper Networks T Series
Core Routers, JUNOS has proven to be one of the most scalable network operating systems in existence.

1�This statement assumes a good systems test methodology, where toxic defects are never shipped to customers and chances for the widely
experienced software problems are relatively small.

2A short synthetic benchmark program by Reinhold Weicker, intended to be representative of system (integer) programming.

12	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

Architecture and Infrastructure
This section addresses architecture and infrastructure concerns related to parallelism, flexibility and portability, and
open architecture.

Parallelism
Advances in multicore CPU development and the capability to run several routing processors in a system constitute
the basis for increased efficiency in a router control plane. However, finding the right balance of price and
performance can also be very difficult.

Unlike the data mining and computational tasks of supercomputers, processing of network updates is not a static
job. A block of topology changes cannot be prescheduled and then sliced across multiple CPUs. In routers and
switches, network state changes asynchronously (as events happen), thus rendering time-based load sharing
irrelevant.

Sometimes vendors try to solve this dilemma by statically sharing the load in functional, rather than temporal,
domains. In other words, they claim that if the router OS can use separate routing processors for different tasks (for
example, OSPF or BGP), it can also distribute the bulk of data processing across multiple CPUs.

To understand whether this is a valid assumption, let’s consider a typical CPU utilization capture (Figure 6). What is
interesting here is that the different processes are not computationally active at the same time—OSPF and BGP do
not compete for CPU cycles. Unless the router runs multiple same-level protocols simultaneously, the well-designed
network protocol stack stays fairly orthogonal. Different protocols serve different needs and seldom converge at the
same time.

Figure 6: Typical CPU times capture (from NEC 8800 product documentation)

For instance, an IGP topology change may trigger a Dijkstra algorithm computation; until it is complete, BGP next-
hop updates do not make much sense. At the same time, all protected MPLS LSPs should fall on precomputed
alternate paths and not cause major RSVP activities.

Thus, the gain from placing different processes of a single control plane onto physically separate CPUs may be
limited, while the loss from the overhead functions such as synchronization and distributed memory unification may
be significant.

Does this mean that the concept of parallelism is not applicable to the routing processors? Not at all.

Good coding practice and modern compilers can make excellent use of multicore and SMP hardware, while
clustered routing engines are indispensable when building multichassis (single control and data plane spanning
multiple chassis) or segmented (multiple control and data planes within a single physical chassis) network devices.
Furthermore, high-end designs may allow for independent scaling of control and forwarding planes, as implemented
in the highly acclaimed Juniper Networks JCS1200 Control System.

With immediate access to state-of-the art processor technology, Juniper Networks engineers heavily employ
parallelism in the JUNOS control plane design, targeting both elegance and functionality.

A functional solution is the one that speeds up the control plane without unwanted side effects such as limitations
in forwarding capacity. When deployed in a JCS1200, JUNOS can power multiple control plane instances (system
domains) at the same time without consuming revenue-generating slots in the router chassis. Moreover, the JUNOS
architecture can run multiple routing systems (including third-party code) from a single rack of routing engines,
allowing an arbitrary mix-and-match of control plane and data plane resources within a point of presence (POP).
These unique capabilities translate into immediate CAPEX savings, because a massively parallel control plane can be
built independent of the forwarding plane and will never confront a limited common resource (such as the number of
physical routers or a number of slots in each chassis).

>show processes cpu seconds unicast

Date Average RIP OSPF BGP RIPng OSPF6 BGP4+ RA ISIS

01/22 15:48:19 3 0 0 0 0 0 0 0 0

01:22 15:48:20 3 0 1 0 0 0 0 0 0

01/22 15:49:18 3 0 0 1 0 0 0 0 0

Copyright © 2009, Juniper Networks, Inc.	 13

WHITE PAPER - Network Operating System Evolution

Elegance means the design should also bring other technical advantages: for instance, bypassing space and
power requirements associated with the embedded chassis and thus enabling use of faster silicon and speeding
up the control plane. Higher CPU speed and memory limits can substantially improve the convergence and scaling
characteristics of the entire routing domain.

The goal of Juniper design philosophy is tangible benefits to our customers—without cutting corners.

Flexibility and Portability
A sign of a good OS design is the capability to adapt the common software platform to various needs. In the network
world, this equates to the adoption of new hardware and markets under the same operating system.

The capability to extend the common operating system over several products brings the following important benefits
to customers:

Reduced OPEX from consistent UI experience and common management interface•	

Same code for all protocols; no unique defects and interoperability issues•	

Common schedule for software releases; a unified feature set in the control plane•	

Accelerated technology introduction; once developed, the feature ships on many platforms•	

Technology companies are in constant search of innovation both internally and externally. New network products can
be developed in-house or within partnerships or acquired. Ideally, a modern network OS should be able to absorb
domestic (internal) hardware platforms as well as foreign (acquired) products, with the latter being gradually folded
into the mainstream software line (Figure 7).

Figure 7: Product consolidation under a common operating system

The capability to absorb in-house and foreign innovations in this way is a function of both software engineering
discipline and a flexible, well-designed OS that can be adapted to a wide range of applications.

On the contrary, the continuous emergence of internally developed platforms from the same vendor featuring
different software trains and versions can signify the lack of a flexible and stable software foundation.

For example, when the same company develops a core router with one OS, an Ethernet switch with another, and a
data center switch with a third, this likely means that in-house R&D groups considered and rejected readily available
OS designs as impractical or unfit. Although partial integration may still exist through a unified command-line
interface (CLI) and shared code and features, the main message is that the existing software designs were not
flexible enough to be easily adapted to new markets and possibilities. As a result, customers end up with a fractured
software lineup, having to learn and maintain loosely related or completely unrelated software trains and develop
expertise in all of them—an operationally suboptimal approach.

New platform
developed

New product
acquired

Platforms A, B

Platforms A, B,
C, Y, Z

Platforms A, B, C

New company
acquired

Platforms Y, Z

Main software train Third-party software train

Third-party software train

Platform YRelease M

Release X+1

Release X

Release X+N

Release N

14	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

In contrast to this trend, Juniper has never used a multitrain approach with JUNOS Software and has never initiated
multiple operating system projects. Since its inception in 1996, JUNOS has been successfully ported to a number
of Intel, MIPS, and PowerPC architectures and currently powers a broad spectrum of routing products ranging
from the world’s fastest Juniper Networks T1600 Core Router to low-end routing devices, Ethernet switches, and
security appliances. Juniper’s clear goal is to keep all products (both internally developed and acquired together with
industry-leading companies and talent) under the same JUNOS Software umbrella.

Degrees of Modularity
Software modularity, as previously described, has focused on the case where tasks are split into multiple loosely
coupled modules. This type of modularity is called “horizontal,” as it aims at limiting dependency and mutual impact
between processes operating at the same peer level. Another interesting degree of modularity is known as “vertical
modularity,” where modular layers are defined between parts of the operating system in the vertical direction.

Without vertical modularity, a network OS remains built for a specific hardware and services layout. When porting
to a new target, much of this infrastructure has to be rewritten. For example, both software- and hardware-based
routers can provide a stateful firewall service, but they require dramatically different implementations. Without
a proper vertical modularity in place, these service implementations will not have much in common, which will
ultimately translate into an inconsistent user experience.

Vertical modularity solves this problem, because most OS functions become abstracted from lower-level architecture
and hardware capabilities. Interaction between upper and lower OS levels happens via well-known subroutine
calls. Although vertical modularity itself is almost invisible to the end user, it eliminates much of the inconsistency
between various OS implementations. This can be readily appreciated by network operations center (NOC) personnel
who no longer deal with platform-specific singularities and code defects. Vertical modularity is an ongoing project,
and the JUNOS Software team has always been very innovative in this area.

Open Architecture
An interesting implication of vertical modularity is the capability to structure code well enough to document
appropriate software interfaces and allow external pluggable code. While a high degree of modularity within
a system allows easy porting to different and diverse hardware architectures, a well-defined and documented
application programming interface (API) can be made available to third parties for development of their own
applications.

In JUNOS, the high degree of modularity and documentation eventually took the form of the Partner Solution
Development Platform (PSDP), which opened the API and tool chain specific to Juniper to customers and integrators
worldwide. PSDP allows these customers and integrators to co-design the operating system, fitting it precisely to
their needs, especially in support of advanced and confidential applications. The degree of development may vary
from minor changes to software appearance to full-scale custom packet processing tailored to specific needs.

The Juniper Networks Software Developer’s Kit (SDK) highlights the achievements of JUNOS in network code design
and engineering and reflects the innovation that is integral to Juniper’s corporate culture. This high level of synergy
between original equipment manufacturer (OEM) vendors and operators promises to enable creation of new services
and competitive business differentiators, thus removing the barriers to network transformation. Just as the open-
source FreeBSD was the donor OS for JUNOS Software, with the Juniper Networks SDK, JUNOS is now a platform
open to all independent developers.

Product Maintenance
Another important characteristic of products is maintainability. It covers the process of dealing with software defects
and new features, abilities to improve existing code, and the introduction of new services and capabilities. It also
makes a big difference in the number and quality of NOC personnel that is required to run a network. Maintainability
is where a large portion of OPEX resides.

Self-Healing
Routers are complex devices that depend on thousands of electronic components and millions of code lines to
operate. This is why some portion of the router installed base will almost inevitably experience software or hardware
defects over the product life span.

Copyright © 2009, Juniper Networks, Inc.	 15

WHITE PAPER - Network Operating System Evolution

So far, we have been describing the recovery process, in which state replication and process restarts are the basis
of continuous operation. In most cases, JUNOS will recover so efficiently that customers never notice the problem,
unless they closely monitor the system logs. A failing process may restart instantly with all the correct state
information, and the router operation will not be affected.

But even the best recovery process does not provide healing; software or hardware component remains defective
and may cause repeated failures if it experiences the same condition again. The root cause for the failure needs to be
tracked and eliminated, either through a software fix or a hardware replacement.

Traditionally, this bug investigation begins with a technical assistance center (TAC) ticket opened by a customer and
requires intensive interaction between the customer and vendor engineers. Once identified, the problem is usually
resolved through a work-around, software upgrade or hardware replacement, all of which must be performed
manually.

Since the early days of JUNOS, Juniper Networks routers were designed to include the built-in instrumentation
needed to diagnose and remedy problems quickly. Reflecting Juniper’s origins as a carrier-class routing company,
every JUNOS system in existence comes with an extensive array of software and hardware gear dedicated to device
monitoring and analysis. Juniper has been a pioneer in the industry with innovations such as persistent logging,
automatic core file creation and development tools (such as GDB) embedded in JUNOS Software, all facilitating fast
defect tracing and decision making). In the traditional support model, customers and Juniper Networks TAC (JTAC)
engineers jointly use those tools to zero in on a possible issue and resolve it via configuration change or software fix.

In many cases, this is enough to resolve a case in real time, as soon as the defect traces are made available to
Juniper Networks Customer Support.

However, Juniper would never have become a market leader without a passion for innovation. We see routing
systems with embedded intelligence and self-healing capabilities as the tools for ensuring survivability and
improving the user experience. Going far beyond the automated hardware self-checking normally available from
many vendors, JUNOS can not only collect data and analyze its own health, but can also report this state back to
the customer and to the JTAC with the patent-pending Advanced Insight Service (AIS) technology. As a result, the
router that experiences problems can get immediate vendor attention around the clock and without involving NOC
personnel. A support case can be automatically created and resolved before operators are aware of the issue. If a
code change is needed, it will go into the next maintenance or major JUNOS release and will be available through a
seamless upgrade on the router. This cycle is the basis of self-healing JUNOS Software operation and paves the way
to dramatic OPEX savings for existing networks.

The main difference between AIS and similar call-home systems is the degree of embedded intelligence.

AIS-enabled JUNOS Software both monitors itself for apparent failures such as a process crash or laser malfunction
and proactively waits for early signs of problems such as degrading storage performance or increasing number of
unresolved packets in the forwarding path. Triggered and periodic health checks are continuously improved based
on actual field cases encountered and resolved by the JTAC, thus integrating the collective human expertise into the
running of JUNOS systems. Further, AIS is fully programmable with new health metrics and triggers that customers
can add. Better yet, in its basic form, AIS comes with every JUNOS system—for free.

Troubleshooting
An often forgotten but very important aspect of functional separation is the capability to troubleshoot and analyze
a production system. As the amount of code that constitutes a network operating system is often measured in
hundreds of megabytes, software errors are bound to occur in even the most robust and well-regressed designs.
Some errors may be discovered only after a huge number of protocol transactions have accumulated on a system
with many years of continuous operation. Defects of this nature can rarely be predicted or uncovered even with
extensive system testing.

After the error is triggered and the damage is contained by means of automatic software recovery, the next step
is to collect the information necessary to find the problem and to fix it in the production code base. The speed and
effectiveness of this process can be critical to the success of the entire network installation because most unresolved
code defects are absolutely not acceptable in production networks.

16	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

This is where proper functional separation comes into major play. When a software defect is seen, it is likely to
become visible via an error message or a faulty process restart (if a process can no longer continue). Because
uptime is paramount to the business of networking, routers are designed to restart the failing subsystem as quickly
as possible, typically in a matter of milliseconds.

When this happens, the original error state is lost, and software engineers will not be able to poke around a live
system for possible root causes of the glitch. Unless the defect is trivial and easily understood, code designers may
take some time to recreate and understand the issue. Offsite reproduction can be challenging, because replicating
the exact network conditions and sequence of events can be difficult, and sometimes impossible. In this case, the
post-mortem memory image (core dump) of the failing process is indispensable because it contains the state of data
structures and variables, which can be examined for integrity. It is not uncommon for JUNOS engineers to resolve a
defect just by analyzing the process core dump.

The catch here is that in tightly coupled processes, the failure of one process may actually be triggered by an error
in another process. For example, RSVP may accept a “poisoned” traffic engineering database from a link-state IGP
process and subsequently fail. If the processes run in different memory spaces, RSVP will dump the core, and IGP
will continue running with a faulty state. This situation not only hampers troubleshooting, but also potentially brings
more damage to the system because the state remains inconsistent.

The issue of proper functional separation also has implications for software engineering managers. It is a common
practice to organize development groups according to code structure, and interprocess software defects can become
difficult to troubleshoot because of organizational boundaries. Improper code structure can easily translate into a
TAC nightmare, where a defect is regularly seen in the customer network, but cannot be reliably reproduced in the
lab or even assigned to the right software engineering group.

In JUNOS Software, the balance between the amount of restartable code and the core dump is tuned to improve
troubleshooting and ensure quick problem resolution. JUNOS is intended to be a robust operating system and to
deliver the maximum amount of information to engineering should an error occur. This design helps ensure that
most software defects resulting in code restarts are resolved within a short time period, often as soon as the core file
is delivered.

Quality and Reliability
System integrity is vital, and numerous engineering processes are devoted to ensuring it. The following section
touches on the practice of quality software products design.

System Integrity
If you were curious enough to read this paper up to this point, you should know that a great deal of work goes into
the design of a modern operating system. Constant feature development and infrastructural changes mean that
each new release has a significant amount of new code.

Now you might ask if the active development process can negatively affect system stability.

With any legacy software design process, the answer would be definite: Yes.

The phenomenon known to programmers as “feature bloating” is generally responsible for degrading code structure
and clarity over time. As new code and bug fixes are introduced, the original design goals are lost, testing becomes
too expensive, and the release process produces more and more “toxic builds” or otherwise unusable software with
major problems.

This issue was recognized very early in the JUNOS development planning stage.

Back in 1996, automated system tests were not widely used, and most router vendors crafted their release
methodology based on the number of changes they expected to make in the code. Typically, every new software
release would come in mainstream and technology versions, with the former being a primary target for bug fixes,
and the latter receiving new features. Defects were caught mainly in production networks after attempts to deploy
new software, which resulted in a high number of bug fixes and occasional release deferrals.

To satisfy the needs of customers looking for a stable operational environment, “general deployment” status was
used to mark safe-harbor software trains. It was typically awarded to mainstream code branches after they had run
for a long enough time in early adopters’ networks.

Copyright © 2009, Juniper Networks, Inc.	 17

WHITE PAPER - Network Operating System Evolution

As a general rule, customers had to choose between features and stability. Technology and early deployment
releases were notoriously problematic and full of errors, and the network upgrade process was a trial-and-error
operation in search for the code train with a “right” combination of features and bugs.

This approach allowed router vendors to avoid building extensive test organizations, but generally led to low overall
product quality. General deployment software trains lingered for years with almost no new features, while technology
builds could barely be deployed in production because of reliability problems. Multiple attempts to find the balance
between the two made the situation even worse due to introduction of even more software trains with different
stability and feature levels.

This practice was identified as improper in the fledgling JUNOS design process. Instead, a state-of-the-art test
process and pioneering release methodology were born.

Each JUNOS Software build is gated by a full regression run that is fully automated and executes for several days
on hundreds of test systems simulating thousands of test cases. These test cases check for feature functionality,
scaling limits, previously known defects and resilience to negative input (such as faulty routing protocol neighbors).
If a failure occurs in a critical test, the final product will not be shipped until the problem is fixed. This process allows
JUNOS releases to occur on a predictable, periodic basis. In fact, many customers trust JUNOS to the point that they
run the very first build of each version in production. Still, every JUNOS version is entitled to the so-called regression
run (if requested by customers). A regressed release is a fully tested original build with all latest bug fixes applied.

The JUNOS shipping process is based on several guiding principles:

Every JUNOS release is gated by a systems test, and no releases with service-affecting issues are cleared for •	
shipment.

Regressed (maintenance) releases, by rule, deliver no new features. For example, no features were introduced •	
between JUNOS Software 8.5R1 and 8.5R2.

As a general rule, feature development happens only at the head of the JUNOS Software train. Experimental •	
(engineering) branches may exist, but they are not intended for production.

No feature backports are allowed (that is, features developed for rev 9.2 are not retrofitted into rev 8.5)•	

No special or customer-specific builds are allowed. This restriction means JUNOS never receives modifications •	
that are not applicable to the main code base or cannot pass the system test. Every change and feature request
is carefully evaluated according to its value and impact worldwide; the collective expertise of all Juniper
Networks customers benefits every JUNOS product.

This release process ensures the exceptional product quality customers have come to expect from Juniper over the
years. Although initially met with reluctance by some customers accustomed to the randomly spaced, untested and
special builds produced by other vendors, our release policy ensures that no production system receives unproven
software. Customers have come to appreciate the stability in OS releases that Juniper’s approach provides.

With its controlled release paradigm, Juniper has set new standards for the entire networking industry, The same
approach was used later by many other design organizations.

However, the JUNOS Software design and build structure remains largely unmatched.

Unlike competitors’ build processes, our build process occurs simultaneously for all Juniper Networks platforms
and uses the same software repository for all products. Each code module has exactly one implementation, in both
shared (common) and private (platform-specific) cases. Platform-specific and shared features are merged during
the build in a well-controlled and modular fashion, thus providing a continuous array of functionality, quality and
experience across all JUNOS software routing, switching and security products.

18	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

Release Process Summary
Even the best intentions for any software development are inadequate unless they can prove themselves through
meaningful and repeatable results. At Juniper, we firmly believe in a strong link between software quality and
release discipline, which is why we have developed criteria for meeting—or failing—our own targets.

Here is a set of metrics for judging the quality of release discipline:

Documented design process: The Juniper Networks software design process has met the stringent TL9000 •	
certifications requirements.

Release schedule: JUNOS releases have been predictable and have generally occurred every three months. An •	
inconsistent, unpredictable or repeatedly slipping release process generally indicates problems in a software
organization.

Code branching: This is a trend where a single source tree branches out to support either multiple platforms •	
or alternative builds on the same platform with unique software features and release schedules. Branching
degrades system integrity and quality because the same functionality (for example, routing) is being
independently maintained and developed in different software trains. Branching is often related to poor
modularity and can also be linked to poor code quality. In an attempt to satisfy a product schedule and customer
requirements, software engineers use branching to avoid features (and related defects) that are not critical
to their main target or customer. As a result, the field ends up with several implementations of the same
functionality on similar or even identical hardware platforms.

Although JUNOS powers many platforms with vastly different capabilities, it is always built from one source
tree with core and platform-specific sections. The interface between the two parts is highly modular and well
documented, with no overlap in functionality. There is no branching in JUNOS Software code.

Code patching: To speed defect resolution, some vendors provide code patching or point bug-fix capability, •	
so that selected defects can be patched on a running operating system. Although technically very easy to do,
code patching significantly degrades production software with uncontrolled and unregressed code infusions.
Production systems with code patches become unique in their software state, which makes them expensive to
control and maintain.

After some early experiments with code patching, JUNOS ceased this process in favor of a more comprehensive
and coherent in-service software upgrade (ISSU) and nonstop routing implementation.

Customer-specific builds: The use of custom builds is typically the result of failures in a software design •	
methodology and constitutes a form of code branching. If a feature or specific bug fix is of interest to a particular
customer, it should be ported to the main development tree instead of accommodated through a separate build.
Code branching almost inevitably has major implications for a product such as insufficient test coverage, feature
inconsistency and delays. JUNOS is not delivered in customer-specific build forms.

Features in minor (regressed) releases: Under Juniper’s release methodology, which has been adopted by •	
many other companies, minor software releases are regressed builds that almost exclusively contain bug
fixes. Sometimes the bug fix may also enable functionality that existed but was not made public in the original
feature release. However, this should not be a common case. If a vendor consistently delivers new functionality
along with bug fixes, this negatively affects the entire release process and methodology because subsequent
regressed releases may have new caveats based on the new feature code they have received.

Copyright © 2009, Juniper Networks, Inc.	 19

WHITE PAPER - Network Operating System Evolution

Final Product Quality and Stability
Good code quality in a network operating system means that the OS runs and delivers functionality without problems
and caveats—that is, it provides revenue-generating functionality right out of the box with no supervision. Customers
often measure software quality by the number of defects they experience in production per month or per year. In the
most severe cases, they also record the downtime associated with software defects.

Generally, all software problems experienced by a router can be divided into three major categories:

Regression defects are those introduced by the new code; a regression defect indicates that something is broken •	
that was working before.

Existing software defects are those previously present in the code that were either unnoticed or (up to a certain •	
point) harmless until they significantly affected router operation.

New feature fallouts are caveats in new code. •	

Juniper’s software release methodology was created to greatly reduce the number of software defects of all types,
providing the foundation for the high quality of JUNOS. Regression defects are mostly caught very early in their
lifetime at the forefront of the code development.	

Existing software defects represent a more challenging case. JTAC personnel, SE community or customers can
report them.

Some defects are, in fact, uncovered years after the original design. The verity that they were not found by the
system test or by customers typically means that they are not severe or that they occur in rare circumstances,
thus mitigating their possible impact. For instance, the wrong integer type (signed versus unsigned) may affect a
32-bit counter only when it crosses the 2G boundary. Years of uptime may be needed to reveal this defect, and most
customers will never see it.

In any case, once a new defect class is found, it is scripted and added to the systest library of test cases. This
guarantees that the same defect will not leak to the field again, as it will be filtered out early in the build process.
This systest library, along with the JUNOS code itself, is among the “crown jewels” of Juniper intellectual property in
the area of networking.

As a result, although any significant feature may take several years of development, Juniper has an excellent track
record for making sure things work right at the very first release, a record that is unmatched in the networking
industry.

Conclusion
Designing a modern operating system is a difficult task that challenges developers with complex problems and
choices. Any specific feature implementation is rarely perfect and often strikes a subtle balance among a broad
range of reliability, performance and scaling metrics.

This balance is something that JUNOS developers work hard to deliver every day.

The best way to appreciate JUNOS Software features and quality is to start using JUNOS in production, alongside any
other product in a similar deployment scenario. At Juniper Networks, we go beyond what others consider the norm
to ensure that our software leads the industry in performance, resilience and reliability.

20	 Copyright © 2009, Juniper Networks, Inc.

WHITE PAPER - Network Operating System Evolution

What Makes JUNOS Software Different

Features

FEATURE BENEFITS TO CUSTOMER
JUNOS Software development efforts
1996–2008

Unmatched experience and expertise

Open-software policy SDK, custom programming and scripting

Self-healing Automatic core processing and Advanced Insight Solution feature

Scaling down Low-end systems with JUNOS software onboard

Scaling up Juniper Networks TX Matrix Core Router, 32,000 logical interfaces, 4000
BGP peers, and 4000 VPN routing and forwarding (VRF) tables

Nonstop operation Unified ISSU and nonstop routing for all code revisions

Intelligent thread scheduling No process deadlocks under all circumstances

Strict engineering and release
discipline

Code quality, no regressions, and features on time

Predictability: JUNOS Software Releases 2004–2008

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Jan

JUNOS 7.5
Released

JUNOS 7.8
Released

JUNOS 8.1
Released

JUNOS 8.4
Released

JUNOS 9.1
Released

JUNOS 7.4
Released

JUNOS 7.7
Released

JUNOS 8.0
Released

JUNOS 8.3
Released

JUNOS 9.0
Released

JUNOS 7.3
Released

JUNOS 7.6
Released

JUNOS 7.9
Released

JUNOS 8.2
Released

JUNOS 8.5
Released

2004 2005 2006 2007 2008

WHITE PAPER - Network Operating System Evolution

Corporate And Sales Headquarters
Juniper Networks, Inc.
1194 North Mathilda Avenue
Sunnyvale, CA 94089 USA
Phone: 888.JUNIPER
(888.586.4737)
or 408.745.2000
Fax: 408.745.2100

APAC Headquarters
Juniper Networks (Hong Kong)
26/F, Cityplaza One
1111 King’s Road
Taikoo Shing, Hong Kong
Phone: 852.2332.3636
Fax: 852.2574.7803

EMEA Headquarters
Juniper Networks Ireland
Airside Business Park
Swords, County Dublin,
Ireland
Phone: 35.31.8903.600
Fax: 35.31.8903.601

Copyright 2009 Juniper Networks, Inc.
All rights reserved. Juniper Networks, the
Juniper Networks logo, JUNOS, NetScreen,
and ScreenOS are registered trademarks of
Juniper Networks, Inc. in the United States and
other countries. “Engineered for the network
ahead” and JUNOSe are trademarks of Juniper
Networks, Inc. All other trademarks, service
marks, registered marks, or registered service
marks are the property of their respective
owners. Juniper Networks assumes no
responsibility for any inaccuracies in this
document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise
this publication without notice.

2000264-001-EN Feb 2009 Printed on recycled paper.

21

To purchase Juniper Networks solutions, please
contact your Juniper Networks representative

at 1-866-298-6428 or authorized reseller.

About Juniper Networks
Juniper Networks, Inc. is the leader in high-performance networking. Juniper offers a high-performance network
infrastructure that creates a responsive and trusted environment for accelerating the deployment of services and
applications over a single network. This fuels high-performance businesses. Additional information can be found at
www.juniper.net.

